D Fermi National Accelerator Laboratory

FERMILAB-Conf-97/314

The Fermilab DART Data Acquisition System at Running
Experiments

Carmenita Moore
For the DART Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, lllinois 60510

September 1997

Presented at the 1997 Real Time Conference, Beaune, France, September 22-26, 1997

To appear in [EEE Transactions on Nuclear Science

Je
A Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



The Fermilab DART Data Acquisition System at Running Experiments

Carmenita Moore, For the DART collaboration, Online Systems Department
Electronics Systems Engineering Department
E781, E815, E831, KTeV, E835, E871, E872
Fermilab, P.O. Box 500, Batavia, Illinois 60150

Abstract

The full DART system described in previous papers
{11,[2], has been running in the Fermilab Fixed target program
successfully since June 1996, when the first beam was delivered
to seven experiments using the system. Since then several test
beam experiments have decided to adopt parts or all of DART.

The DART data acquisition system is designed to meet
the needs of a number of experiments with a wide range of
requirements: from a few hundred KB/s at low rates to one
of the highest rate HEP data acquisition systems in operation,
160MB/s, for KTeV. What stands out in DART is its fully
distributed nature, its high degree of tailor-ability, and its wide
capabilility of readout rates and throughput, while at the same
time maintaining high levels of integration.

‘We report on the status of DART and additions that have been
and are being developed for the new customers. We also review
experiences gained from use at running experiments and future
extensions for use by test beams including DO and MINOS.

I. INTRODUCTION

DART is a collaboration between Fermilab experiments and
the Fermilab Computing Division to provide a generally usable
DA system for the Fixed Target running period 96-97. The
run started ramping up in June of 96, and culminated with
eight experiments taking data with DART. The experiment data
acquisition systems have performed reliably since the start of
commissioning. The strategy of incremental versions of DART
to support commissioning and then full data taking proved
successful and resulted in data acquisition not becoming a
critical path item for any of the experiments. As of February,
the high rate KTeV experiments has recorded approximately 2.5
billion events onto 20 TB of dIt tapes.

In DART, front-end readout controllers push data over
multiple RS-485 “stream” readout cables into programmable
dual ported buffer memories residing in VME “event building”
crates. A single event spans across streams, and its pieces are
directed to a single VME crate. Events are cycled through
VME crates in a round-robin fashion, and each VME crate
is connected to a SGI Challenge processor via a Performance
Technology (PTI) high speed VME-VME link. The Challenge
reads the event table and fragments from the buffer memories
into its own memory, which is managed by DART software.The
highest bandwidth user, KTeV, had 6 streams, 3 event building

!This work is sponsored by DOE contract No. DE-AC02-

76CH03000

VME crates, and an online analysis crate, for a total of 24 buffer
memory nodes.

DART is a fully distributed system, designed to start up,
control, and monitor an arbitrary number of computer nodes,
and efficiently handle replicated nodes. It is also highly
customizable at all levels. DART provides a mechanism to
define and automatically start up multiple DA configurations.

. Application control is performed in a parallel, but synchronized

fashion. DART software also provides

e a distributed information system for configuring the DA,
recording run history, and temporary storage of statistical
information

e a system for local buffer management and providing
services on the buffers

e a data logger for tape and disk files
e an error reporting, logging, and display system

¢ a system for providing back-end workstations with live
data over the Internet and an analysis framework to process
the data and display it in PAW or HISTOSCOPE and lastly

o a sophisticated graphical statistics monitoring system for
monitoring the entire DA.

II. DART FIXED TARGET RUN STATUS

DART experiments have recently completed the 96-97 fixed
target run. Overall, the DART system remained extremely
robust. On-call support was characterized by a minimum
of support calls and these were for the most part computer
hardware failures rather than software failures.

The DART hardware was stable with the exception of a
few ECOs made for adjusting to the realities of experiment
environments (e.g. ground loop and transmission line effects).
At one experiment fiber optic transmitter ICs were operating
below their design temperature due to the Chicago winter air
coming througha cooling vent. In addition, problems with extra
or missing data words had to be resolved.

After resolving the usual problems of memory leaks-and
corruption in some DART components during commissioning,
(see the Dart Integration Experiences section below), online
software also remained both stable and reliable. Software
upgrades were limited to minor fixes or enbancements such as
new diagnostic tools. Memory leaks and corruption problems
of this nature are expected in early releases of software and were
fixed during the commissioning phase of the run and not during
full data taking.



ITI. TEST BEAM EXPERIMENTS

We are currently working on integrating DART into a
number of test-beam DAs. Integration with older parts of the
CDF Run I software being used for the test-beam DA went quite
well.

Integration of DART with EPICs in the DO test-beam is
ongoing. They use all the major components for the Unix, such
as the error reporting, configuration management, startup ,etc.
Their initial use of the TCP/IP event transport software, p2p, to
buffer an event and transfer it over a socket to a UNIX box, was
modified to a multi-source scheme for VME. Implementation
of a monitoring client capable of handling event data as well as
EPICS output is still pending,.

The MINOS test-beam was successful in its use of DART.
They also employed the major Unix components of DART, and
also included use of CAMAC libraries written by E872, for 2249
and 2280 modules, for data readout through a CBD.

IV. DART INTEGRATION EXPERIENCES

The strategy of incremental releases of the DART system
to the experimenter to support on going DA activities proved
invaluable, for both debugging and integration testing among
the code developers and the users alike, allowing problems to
be uncovered early enough such that no data acquisition system
became a critical path leading into the run.

Early releases of some software components had low level
memory leaks, segmentation faults, or corruption problems of
some form. Occurrences of these problems, ranged from once
every few hours to once per month. Because of their low
frequency and non-local nature, these bugs are very difficult to
track down. In light of this difficulty, we began pursuing the
use of software tools and techniques to improve the quality of
the online software. A couple of months into the run, we began
evaluating Parasoft’s Insure++ [5] and PureAtria’s Purify [6]
tools for analysis of runtime, and memory errors. Both products
are used by factions within the Computing Division, but for our
purposes, use of Insure++ was more extensive.

Insure++ detects programming and runtime errors, memory
corruption and memory leaks, including compile time, runtime
and third party errors from other packages such as X, Motif,
curses and Unix system calls. It was evaluated on an older
version of the configuration management software, dis, known
to have leak and corruption problems, which were fixed in
subsequent releases after man hours of debugging. Insure++
located all the known problems plus some, including compile
time errors. The pinnacle for this tool was solving a once per
day crash in the monitoring software, damp, occurring at only
one experiment. It took a weekend of running the experiment’s
damp configuration on our test-stand before the offending code
path was traversed. The bug was identified by the tool as a
double memory free. We have since “insured” all of our core
software and recommend use of Insure++ in C and C++ code
development.

Another technique employed in improving software quality
was code walkthroughs [3], [4], again motivated by a recurring
corruption caused by error in code logic but undetectable by

Insure++. The logic error was found and fixed as a result of the
walkthrough. Walkthroughs were also used to evaluate the logic
of algorithms in other core components with positive resulits.

V. CURRENT WORK AND FUTURE PLANS

A Fixed Target Run in 1999 is under consideration by Lab
management. In preparation, we are working on extensions to
the DART hardware and software systems. Possible changes
include the port of DART components to other platforms,
investigation of hardware alternatives to increase event
throughput from VME to UNIX, and a Java based variant of an
error reporting/monitoring system.

A. DART Software Modifications

Much of the recent work on DART has been modifications
and/or enhancements to the existing components :

e The operator control panel (ocp) [14] was modified
to include a logger “state display”, besides the logger
statistics fed to the monitoring system for display. The
addition of a graphical editor for editing the system
configuration parameters, still only in the design phase.

o the TCP/IP event transport software written at E872, p2p,
was extended to a multi-source gateway for the DO test
beam.

e extensions to DART include porting some of the
components to NT and/or Linux. At this writing, daft has
been ported to NT and the IEEE CAMAC driver has been
ported to both Linux and NT.

There is general interest in porting DART components to
Linux by the Computing Division, and experimenters. Due to
the load on the monitoring an slow control nodes of their DA,
KTeV, is considering porting to Linux. Since engineers and
hardware module developers/testers use PCs the availability of
test-stand software for NT is advantageous.

B. Alerts

New on the scene is a CDF effort along with the
Fermilab Computing Division to develop a prototype error
reporting/monitoring subsystem for the CDF Run II Vertical
Slice Test, [10]. Its goal is to use NDDS (Network Data
Delivery Service) [7], to transfer error and statistical data from
VME to UNIX for display and monitoring in Java applets,
which dynamically update, running as an application or in a
browser. NDDS employs a dissemination architecture, where
producers publish data into “the network” and consumers
subscribe to data from "the network”; neither knows where the
data goes or originates.

The alerts error reporting/monitoring system will be
incorporated into DART as a variant of the current error
reporting (murmur) and monitoring (damp) subsystems.

One of the motivations for alerts is ease of access to error and
statistical DA information via generic web interface (hence the
use of Java), from whereever a web interface is available.



Advantages of the alerts error reporter over murmur, include
more flexible control over routing messages to displays, greater
control on message attributes provided by filter pattern matching
applied to messages to display glyphs, run scripts, play sounds,
etc.(see jems section below) in conjunction with our efforts to
provide more sophisticated, user friendly, portable software to
our experimenters.

1) jems

The error reporting system, jems (Java Error Message
System), is.composed of an error reporting server, written in
Java, which acts as a consumer of NDDS error messages that
it in turn transfers over TCP/IP sockets to its Java error clients
for display. Error status Messages are sent to an error reporting
client based on filters sent to the server from the client. A filter
can be a specific string, or a string including wildcards and/or
regular expressions. When the server receives an NDDS error
message, it performs pattern matching of the message against
each of its clients list of filter requests. A message is sent to
every client whose filter the message matched.

The design of the jems error display applet allows color
display of error messages. By default, color is based on the
severity of the message. The message display can be configured
dynamically or by an html file to base message color on the
nodename, application name or filter pattern matching applied
to the text of the message. This second level of filter pattern
matching is internal to the applet and is separate from the the
filtering the server performs to route messages to the client. The
display of an error message, can also include sound or image,
based on the filter pattern matching.

A test version of jems has been recently released. Only basic
functionality is implemented:

o color display of messages based on their severity

¢ dynamic configuration to change the background color and
size of the display, and the font size of messages

» filter configuration to specify the filter list sent to the jems
error server, removal of those requests from the server i.e.
the server no longer sends messages matching that filter
to the client, and deletion of the filter completely from the

applet.
2) jams

Investigation and design of the monitoring system, jams
(Java Alarms Monitoring System), is underway. Its main
components will include a server implemented in Java, designed
to handle both NDDS and socket client consumers, and Java
applets using widget libraries for data monitoring and display.

A number of third parties have been written class libraries
to fill in the gaps of Java’s AWT class libraries. Missing are
such commonly used widgets as image buttons, tabbed folders,
scrolled windows, progress bars etc.

As part of the survey of third party libraries for the error
and monitoring system, some useful components and propertics
have been defined [11], based on the lacks in the standard
Java AWT classes and features and functionality considered
desirable:

e Scrolled Window. Implementing these with the basic AWT
classes is tedious, and it is difficult to obtain adequate
performance. A good scrolled window is essential for any
serious work. One is included in the basic Java 1.1 widget
set. An ideal implementation would support live scrolling.

o Extended Button. The Button class in the AWT does not
allow multi-line text, or images. Also, mouse events are
not delivered so that the standard “help” pop-up cannot be
done. A good button class would allow all these things.

o Tabbed Folders. While the AWT CardLayout allows these
to be implemented, this is tedious. A good implementation
would allow multiple rows of tabs.

e Multicolumn List.

¢ Hierarchical Tree. This should support icons as tree labels.
Ideally it should also allow multiple columns.

e Progress Bar. This should allow optional display of the
percent number.

e Toolbar, This could be trivially implemented with a
reasonable Button class so is not crucial.

¢ Convenience Dialogs. Analogous to the Motif and/or tk
question, message etc. boxes. These are sufficiently easy
to implement so as to not be crucial.

o Combo box (combined textfield/choice).

e Graphs/charts. Needed in some specialized applications
such as jams.

According to the above requirements and jams need for
graphs and charts, especially a strip-chart, we are evaluating
NetFactory’s NetCharts [9] and KL Group’s JClass Chart {8].

Definition and design of the interface to handle the
communication of dynamic data updates from the NDDS
environment into that of the chosen Java widget library for
display is also being done.

C. Hardware

Increased rate of VME event throughput is an issue for E872
and possibly DO. The currently supported links from the “event
building” VME crate are the PTI VME to VME, or Ethernet.
While the slower (< 400 KB/s) Ethernet option exists, change
in the accelerator beam spill cycle for the 1997 run will require
greater throughput, requiring the DA computer to have a VME
bus, such as an SGI challenge, and this is expensive. We are now
exploring use of the BIT3 link, which supports other busses such
as gio, to fill this performance gap. This will permit cheaper
filter/logging computers, such as an SGI Indy, to be used. Since
the BIT3 does not support VME D64, but rates of up to 20MB/s
are available.

We are exploring upgrading the DART data cable links from
the front end readout crates to the event builder by doing R&D
on a new data link protocol and interfaces [15]. The goal
is to provide for low cost connection to parallel links of 100



Mbytes/sec from the data sources, over fiber optic or copper
10 a 64 x 64 cross bar switch and delivery to the level 3 filter
processors. The unique features of the design of this system
include hardware level system auto-initialization, easy ability to
cascade switches in an overall DA architecture, flexibility in the
configuration from small to large systems - something that has
proven of actual value in DART - and attention to diagnostics
and monitoring during the hardware architecture design and
implementation - again something that has proven its worth in
the current DART hardware implemention.

VI. CONCLUSION

DART has been successfully incorporated into eight
experiments which comprise a wide range of requirements,
rates, and architectures. The goals defined at DART’s inception,
to provide a general, customizable, and robust DA system to
meet the needs of these experiments was successfully achieved.

We are actively researching and evaluating tools and
techniques to improve the quality of software, including our
flavor of code inspection techniques as they apply to the
development of software in the high energy physics community.

‘We hope that the experiences gained in Fixed Target 96-97
will place us further ahead in our DA system development for
Fixed Target 99.

VII. REFERENCES

[1] “Extending DART to Meet the Data Acquisition Needs of Future
Experiments at Fermilab”, Proceedings of CHEP95

[2] www-dart.fnal.gov:8000, DART collaboration home page.

[3] EBerman ”Software Inspections at Fermilab - Use and
Experience” RT97 Conference Proceedings

[4] www-ols.fnal.gov/ols/www/process/ftrhtml, Formal Technical
Reviews Web page

[5] www.parasoft.com/insure, Parasoft’s Insure++ Web page

[6] www.pureatria.com, www.pureatria.com, PureAtria, Purify Web
page

[71 www.rti.com, Real-Time Innovations, Inc., NDDS Web page

[8] www.klg.com/jclass, KLG Group’s JCLASS/JCHART Web page

[9] www.netcharts.com, NetFactory’s NetChart Web page

[10] www-ols.fnal.gov/ols/www/alerts/alerts.html, Alerts Project
Web page

[11] www-b0.fnal.gov:62000/programming/Java/awtextensions.html,
CDF’s AWT Extensions Web page.

[12] www.fnal.gov/cd/serial_media/serial-media.html, Serial Media
Web page.

[13] www.fnal.gov/fermitools/abstracts/camac/abstract.html,
Fermitools CAMAC Web page

[14] L.Mengel, et al. "Operator Control Program (ocp) User’s Guide”
available from URL, fndaub.fnal.gov:8000/vcurrent/vdart. htmi

[15] dahserv.fnal.gov/daq.randd/specifications/system_spec_working_draft.htm,
DALite Data Acquisition System Web Page



